世界
– FAO は世界サミットに向けた新食糧安保構想を提唱
アフリカ
– Sahel での除草剤耐性イネのインパクト評価
– OFABがエジプトで発足
南北アメリカ
– 馬の尾(アカザなどを含む雑草)の遺伝子構造解析完了
– EnrichTMは穀物への燐の利用を増進する
– プエルトリコがバイオテクノロジー促進法に署名
– 甚大な被害を及ぼす “Cruise Sheep ウイルス” ワクチンをタバコで生産
– 究極の旱魃耐性芝生/ Pasture Grass を創生
アジア太平洋
– フィリピンは冠水耐性イネ品種を開放系栽培へ
– Monsanto と Dowの8形質導入コーンの輸入を日本が同意
– Malaysian Biotech Corp は、農業バイテクに関するバイオ投資白書を発表
– アジアの農民がバイオテクノロジーに賛意を表明
– 霜害耐性穀物品種開発の育種家支援プロジェクト
– 遺伝子組換え作物のオーストラリアでの真の姿を AFAAが述べた
– 中国での遺伝子組換えイネはどうなっているか?
– 台湾が更に他の組換えトウモロコシ品種を承認
– 日本とEMBRAPAが旱魃/高温耐性大豆について協力
ヨーロッパ
– ベルギーで遺伝子組換えポプラの試験が開始
– EFSA は、組換えトウモロコシ MON810 を再評価
-胴枯れ病耐性ジャガイモがもうすぐ出現するか
– ヨーロッパは医薬生産遺伝子組換え植物の開放系栽培の指針を公表
-英国では消費者は遺伝子組換え食品をそれほど心配していない
研究
– 遺伝子組換えトウモロコシは線虫を集めて強力なハムシモドキを殺す
– タバコでの組換えタンパク質を増加させる新しい機構
– 代謝制御工学による植物中のビタミン B6 含量の増加
– ひどい損害をもたらすイモチ病耐性の遺伝子を発見
– 遺伝子組換え作物からの心臓に優しい油
バイオ燃料補遺
– セルロース分解能を改良するためのTrichoderma reesei おける交雑の利用
– “ロゼッタ酵素、Rozettazyme”: セルロースからのエタノール生産のための合成セルロソーム
– “不合格“スイカジュースの飼料または/及びアルコール発酵の窒素補給剤としての利用
– 固定床発酵用に改良した微生物は、バイオ燃料であるブタノールの生産を改善した
————
ニュース
————
*世界 *
– FAO は世界サミットに向けた新食糧安保構想を提唱
食糧農業機関(FAO)は、FAOと国連のメンバーの外務、共同開発、農業を担当する大臣にローマで2009年11月に行われた食糧保証に関するサッミト宣言を考慮するようにとの文書を送った。
世界食糧保証サミットの目的と可能な合意決定を定めるのに力を発揮した事務局は、2025までに飢餓の完全解消と2050には92億人になると予想される世界の人々に確実に、十分で安全なしかも栄養も十分な食糧を供給することを提唱に盛り込んでいる。文書で取り上げられている事項は、新しい実効ある世界食糧保証制度、途上国での農業生産への公私の投資の増加、研究組織およびその能力育成の構築、食糧の質と安全性、そして、植物及び動物の害虫や病気の国境を越えた移動管理に関する提案を含むものである。
FAOのプレスリリースは、以下のサイトにある。 http://www.fao.org/news/story/en/item/29219/icode/
*アフリカ *
– Sahel での除草剤耐性イネのインパクト評価
サハラ以南のアフリカの農民は、特にセネガル川バレー(SRV)で、除草剤耐性技術を採用できるならば、大幅に利益を得ることがでる。これは、Crop Protectionジャーナルに発表された予想析法の結論である。アフリカのライスセンター(WARDA)のMatty Demont氏と共同研究者とセネガル農業研究所(ISRA)は、SRVへの除草剤耐性イネの総価値は、へクタール当たり€22から €26(36から43米ドル)に相当し、農民は、ヘクタール当たりその内16ユーロ(26米ドル)または3分のを得ることになる。また、農工業は、ヘクタールあたり6から10ユーロ(10乃至17米ドルを得ることになる。研究者は、「助成支給された化学製品と比較的安い除草労賃を利用できるのが農民であることを考えると、農工業の利益は極僅かである」と述べている。
報告は以下のサイトにある。 http://dx.doi.org/10.1016/j.cropro.2009.05.012
– OFABがエジプトで発足
アフリカ農業バイオ技術公開フォーラム(OFAB)のエジプト部会が、先週、カイロで始まった。OFABは、主要な農業バイオ政策決定者にネットワーク、知識と経験の共有の機会を与え、アフリカの農業に科学と科学技術の利点を導入するに当たっての新しい共同の方策を検討した。政府当局、メディア、科学者と民間の代表が、この開設に出席した。
Mohamed El Garhy 教授(農業研究センター(ARC)の副所長)は、「バイオテクノロジーは、農業部門の大きな手助けとなる」、そして「バイオテクノロジーの応用がアフリカでの農業分野が直面している各種の挑戦への大きな助けになる」と述べた。Ahmed Bahieldin教授(農業遺伝子工学研究所(AGERI)の所長)は、アフリカの農業分野が直面している最も重要な挑戦と如何にエジプトがそれらを支援できるかについて議論した。彼は統合的戦略の使用を強調し、バイオテクノロジーの使用に高い優先度があるとした。Randy Hautea博士(国際アグリ事業団、ISAAA)の国際コーディネーターは、エジプトと北アフリカでのバイオテクノロジーの情報伝達におけるエジプトバイオ情報センター(EBIC)の役割を強調した。
OFAB-エジプト部会は、アフリカ農業テクノロジー財団とISAAA AfriCenterとの共同協定を通して運営されることになる。
OFAB立ち上げについての詳細は、 Ismail Abdel Hamid 氏( isamail@isaaa.org.)と連絡を取ってください。
*南北アメリカ *
– 馬の尾(アカザなどを含む雑草)の遺伝子構造解析完了
馬の尾は、世界中で問題になっているアカザなどの雑草を含むAmaranthus属に属している。馬の尾という雑草の遺伝情報は、イリノイ大学のKeckセンターでpyrosequencing法で最近同定された。この技術は、通常、完了する年以上がかかるゲノム配列に革命をもたらした。Pyrosequencingに使う機器は、並行して小さい反応セルの全てで配列反応を行い、1 7時間半で配列決定が完了する。
馬の尾のゲノム配列はウェブサイトから入手できて、雑草の研究に利用できるとともにそれがどのようにして出現し、栽培植物との相違点、各種近縁及び遠縁の雑草との関連及び除草剤抵抗性出現の考えうる進化とメカニズムの研究に利用できる。
より詳しいプレスリリースは、以下のサイトにあります。 http://www.aces.uiuc.edu/news/stories/news4860.html
– EnrichTMは穀物への燐の利用を増進する
燐は、植物の通常の発育成長に必須の元素である。自然界では、無機体の燐は、極端なpHレベルでは他のイオンと結合しているため植物が容易に利用できない。Seed Enhancements and Nutrients for Precisionと言う会社が発見したシュードモナスの新しい種は、土壌中の無機体燐を利用できる形態にするものとして農家が利用できるようになった。
EnrichTMとして市場に出されるバクテリアは、その生き残りのために特に燐を必要とする。これは無機燐を可溶化する有機酸を生産し、そのうえ有機リン酸塩の利用性を強化する酵素を生産する。このようにして、これはそれ自身が必要とする環境を作り、植物が利用できるように土壌中の燐の量を増やす。
詳しいプレスリリースは、以下のサイトにあります。 http://www.precisionlab.com/itemimages/enrich_release.pdf
– プエルトリコがバイオテクノロジー促進法に署名
プエルトリコ知事Luis Fortuno氏は、「プエルトリコの農業バイオビジネスの促進及び開発に関する法律した。」。また、プレスリリースでは、Sharon Bomer Lauritsen氏、(食糧及び農業バイオ工業機構(BIO)取締役副社長、以下のようにのべた。「プエルトリコ立法議会とFortuño知事の協同で連邦の農業バイオ研究開発を促進する法律に署名したことは、彼らの複合リーダーシップと先見性を讃える。」
Lauritsen氏は、更に以下のように述べた。「新しい法律は、どの自治体のその地域で統制しようとする試みを先取りするものである。プレルトリコをふくむ16以上の州政府(プエルトリコを含む)が農業バイオテクノロジーを統制しようとする試みを先取りするようしたものである。北アメリカも農民及び我々の加盟会社が異なっている規則と標準の混ざり合いを同じテクノロジーに適用することがないようにしたものである。」
Bioのプレスリリースは以下のサイトにある。 http://bio.org/news/pressreleases/newsitem.asp?id=2009_0812_02
– 甚大な被害を及ぼす “Cruise Sheep ウイルス” ワクチンをタバコで生産
H1N1インフルエンザウイルスの最近の発生で、科学者と市民は、ウイルスがどれくらい速く新しくて危険な形に突然変異することができるかを再び思い知らされた。しかし、ワクチンの発見と生産は、そんなに速くなく、まだ高くつくプロセスである。感染症センターとアリゾナ州立大学ワクチン学のCharles Arntzen 氏は、特にノロウイルスまたは「cruise sheep virus」と戦うために、遺伝子工学処理をした植物で、これらに対抗するワクチンを作ることを研究した。「このウイルス病は極めて危険性が高く、病院閉鎖、保育所や年輩者の日中の保養施設の正常な日常業務、ビジネス勤務予定、を破綻せしめるものである。」とArntzen 氏が述べた。
研究チームは、直径25ナノメートル(ノロウイルスと同じサイズ)についてタバコ植物で「ウイルスのような」ナノ粒子をデザインした。小粒子は、ウイルス本来の外側タンパク質だけからなる。これは、 人間の免疫系によって認識されるものであるが、感染性のある物質は全くない。
Arntzen氏は、アメリカ化学会の第238回年会でこのワクチンは12乃至18ヶ月ごとに投与して新しい型のノロウイルスに対抗力を向上できると発表した。Arntzen氏は、植物バイオテクノロジーがノロウイルスとインフルエンザウイルスのように突然変異しやすいウイルスに対抗するのに安価で、より速くワクチンを製造するユニークな方法を提供できると述べた。
詳しくは、以下のサイトのプレスリリースにあります。 http://portal.acs.org/portal/acs/corg/content?_nfpb=true&_pageLabel=PP_ARTICLEMAIN&node_id=222&content_id=CNBP_022762&use_sec=true&sec
_url_var=region1&__uuid=66ff3fde-325e-425a-b5c7-e0db4f1372cb
– 究極の旱魃耐性芝生/ Pasture Grass を創生
旱魃に非常に耐性であるであるブルーグラス類似の芝生またはpasture grassを育種することは、米国農務省ウッドワード(オクラホマ)の農務省南部平原農業研究所の遺伝学者Jason Goldman氏とその共同研究者のゴールである。これは、小麦と他の一年生作物に代わるものとして南部大平原の多年生の涼しい気候での飼料用牧草を育種する計画の一部でもある。
育種計画はテキサスブルーグラスの高温と旱魃抵抗性をblue grassの新品種を作ることを狙っている。そして、ケンタッキーblue grassの優れた芝特徴と種子生み出すことを狙っている。そのうえ、ハイブリッドは真に確実にしている同一の子孫を実らせるケンタッキーブルーグラスの能力も保持していなければならない。
研究者は、芽のDNAサンプルからブルーグラスハイブリッドであることが確実な9つのDNAプライマーを同定した。これらのマーカー(目印)も、他のblue grassとテキサスブルーグラスの子孫を追跡するのに使える望ましい形質か好ましくない形質かを検討するための目印とすることで望ましいか好ましくない形質との関連性を見るのにも利用できる。
詳しいことは以下のサイトのプレスリリースにあります。: http://www.ars.usda.gov/is/pr/2009/090817.htm
*南北アメリカ *
– フィリピンは冠水耐性イネ品種を開放系栽培へ
フィリピンの種子工業会議(NSIC)は、国で最初の洪水耐性のイネ新品種は異邦利用を承認した。NSIC Rc194(別名Submarino 1)は、インドの品種(FR13A)から国際イネ研究所研究所(IRRI)とカリフォルニア大学-デイビスによって発見された冠水耐性遺伝子を導入したIR64である。
新しいイネ品種(従来法で育種開発された)は、しばしば台風に見舞われる国の農民にとってよい知らせである。Submarino 1には、IR64と同じ収穫高(およそ4.5t/ha)であるが、10日間完全に冠水されても成長熟・結実できる。
フィリピンライス研究所(PhilRice)は、Submarino 1を広めており、育種家向けの種子に0.3 haを、この雨季(2009年度)のための種子に0.5 haを割り当てた。今年の2009の雨期(WS)は、実を結びます。フィリピンライス研究所は、2010年の雨季向けの商業栽培用の種子を農民に分けられるようにすると言っている。
詳細は以下のサイトにある。 http://www.philrice.gov.ph/index.php?option=com_content&task=view&id=877&Itemid=1
– Monsanto と Dowの8形質導入コーンの輸入を日本が同意
モンサント社とダウAgroSciencesは、新しい形質(害虫耐性、除草剤耐性)遺伝子組換えコーンであるSmartStaxの輸入の完全な承認を日本政府から受けたと発表した。SmartStax は、以前に米国の環境保護局とカナダの食品管理局(Food Inspection Agency、CFIA)から、認可承認を受けている。プレスリリースでは、モンサントとダウは、「SmartStaxコーンの食物、飼料と環境への安全性について、個々に検査を受け、日本で政府機関承認を得た。」と言った。
SmartStax(モンサントとダウとの2007年の共同開発製品)は、地上及び地下の両方の害虫に対する抵抗性を減らすリスクを大きく減少させる形質を取り込んでいるとされる。両社は、来年400万エーカー以上の組換えコーンを市場に出す予定である。
プレスリリースは、以下のサイトにある。 http://www.dowagro.com/newsroom/corporatenews/2009/20090731a.htm
– Malaysian Biotech Corp は、農業バイテクに関するバイオ投資白書を発表
農業は、製造とサービス部門に次ぐマレーシアの成長ための第3のエンジンである。それは、バイオテクノロジーがこの部門の価値創成を変革し、強化するためのツールとして国家バイオテクノロジー施策(NBP)の下の最初の起爆剤としての重要性を認められたものである。NBPの施策公表以来、主に科学、技術、及び革新省とマレーシアのバイオテクノロジー社(BiotechCorp)によって、この施策を実現するために政府が様々の努力を行ってきている。
これらの努力への最新の追加事項は、農業部門に関する包括的な情報をまとめて白書アである。これで世界と地域でのシナリオの概要が示された。本白書は、潜在的投資家と協力者のために農業バイオテクノロジー部門に関連したいろいろな面に関する直接の情報を提供するものである。ここにまとめられた領域は、作物、天産物、家畜、海産物及び農業である。白書は、この領域の鍵となる成功要因、ビジネスチャンスと研究開発に関することを論じている。
より詳しい内容は以下のサイトにある。 http://www.biotechcorp.com.my またはマレーシアバイオ情報センターのMahaletchumy Arujanan氏(maha@bic.org.my)に連絡を取ってください。
– アジアの農民がバイオテクノロジーに賛意を表明
アジアの農民は、世界中のバイオテク作物を栽培している1300万人の農民に代わって現代のバイオテクノロジーがどのように彼らの生活を変え、その農地のよりよい管理の助けになっているかを話した。つのアジア諸国からのバイテク農民が、植物科学工業会社を代表するCropLife Internationalの地域支部のCropLife Asiaによって開催されたフィリピンでのパン-アジア農民交流会議2009に集まった。そして、農民は、食物、飼料、燃料と繊維保証の世界的な挑戦における遺伝子組換え作物の優位性を農業バイテクの専門家からの説明を受けた。
「農民は、BtとGM技術の最大の受益者である」と、Saturnina Halos博士(農務省のバイオテクノロジー顧問のチームの議長)が言った。農民交流プログラムは、Quirino州の高地の遺伝子組換えコーン農場の視察で終わった。「私は、私の仲間の農民に、GMが人類にとって非常に重要であるので、遺伝子組換え作物の善悪についてを伝えたます。」と、Supat Cherdsang氏(タイからの農民リーダー)が言った。
フィリピンの農業バイテクについての最新情報は、以下のサイトある。http://www.bic.searca.org または以下のサイトにメールで問い合わせ下さい。bic@agri.searca.org.
– 霜害耐性穀物品種開発の育種家支援プロジェクト
オーストラリアは農業・食糧省は、アデレード大学とクイーンズランド州一次産業及び漁業省とオーストラリアの小麦と大麦に対する霜害のインパクト調査の4年計画を協同で実施している。2008年度の霜害は、オーストラリアの穀物栽培者にとって約1億900万ドル(USD 9100万)であった。Grains 研究開発社に資金援助を受けたプロジェクトに関与する科学者は、この調査結果が霜害に抵抗性のある高収量・地域適性のある品種を育種するのに役に立つものと望んでいる。
このプロジェクトは、9品種の大麦と3品種の小麦がこの地域での霜害に対する状況とその遺伝的特性の関係を調べている。「穀物への傷害はいつでも起こるが、月から9月までまたは不稔の結果穂と茎への傷害が最も大きなものである。」と、Ben Biddulph氏(研究リーダー)が言った。「異なる霜による具体的な傷害の範囲がどのようなメカニズムのよるかを理解することが、植物育種家がよりよい霜害耐性品種開発することにつながる」とも言った。
プレスリリースは、以下のサイトにある。http://www.agric.wa.gov.au/PC_93530.html?s=1001
– 遺伝子組換え作物のオーストラリアでの真の姿を AFAAが述べた
一般市民は、反対する組織化された運動ではなく、遺伝子組換えの科学を良く知るべきである。「すべての遺伝子技術研究とその成果としての製品は、人間の健康と環境安全性を確かめるために、オーストラリアでは非常に厳重に管理されている。一部の人々がこれらの製品を避けるほうを選ぶかもしれないが、彼らは他の人がそれを選択するのを妨害しなければならいのでしょうか?」とPaula Fitzgerald氏(専務取締役、Agrifood Awareness Australia)は、質問している。
「ご都合主義的に無理解と歪曲感をもった遺伝子組換え作物反対運動家は科学を無視している。GM作物の安全性に疑いを起こし、オーストラリアの食物供給の安全性に疑問を投げかけているのはまさに無責任である」と、Fitzgerald氏が言った。オーストラリアのパースはGrains West Expo 2009のサイトで、テクノロジーに関するさまざまの見解を理解することを狙っている。
詳しい情報を得るには以下のサイトにメールして下さい。 AntheaSolomon@afaa.com.au
– 中国での遺伝子組換えイネはどうなっているか?
遺伝子組換え(GM)米は、すぐに中国の食事の一部になるだろう。「中国は組換えイネの研究に取り組んで、その商業化を強く考慮している」と、農業省担当副大臣のNiu Dun氏が言った。Cao Mengliang氏(中国国立ハイブリッドイネ研究開発センターの分子イネ研究者)と機軸を同じにするもので、同氏は以下のように加えた。「テクノロジーの安全性に関する研究は、完了した。市場にそれを出すべきかどうかに関する議論が、現在最終段階にある。現在、安全証明書が商業化前に必要な最後の事柄である。」
中国日報によると、中国の農業政策センターはGM米が農薬使用を80パーセント削減し、産出高がおよそ6パーセント増加するとのことだ。中国は、現在およそ億トンの米を生産し、2020年までに16億に増大することになっている人口では、6億3000万トンの米が必要である。
全報告は、以下のサイトにあります。 http://www.chinadaily.com.cn/china/2009-08/25/content_8611098.htm
– 台湾が更に他の組換えコーン品種を承認
台湾の保健省は、国に輸入のためにSyngentaの4形質積み重ねた組換えトウモロコシ製品の輸入を承認。この最近の承認で、DOHは全体で11の形質積重ねトウモロコシ製品の輸入を承認したことになり、これには方法、3方法回、4方法1回の形質積重ね品種も含まれる。米国穀物会議のポートによると、積重ねた品種の最近の承認は、「疑う余地なく米国トウモロコシの輸入をなめらかにする助けとなる。」と述べた。
台湾は、2009年月(昨年と比較して20パーセントの増加)に、423,955メートルトンのトウモロコシを輸入しました。
原報告は以下のサイトにある。 http://www.grains.org/news-events/1871-approval-of-biotech-events-in-taiwan-creates-opportunity-for-us-corn
– 日本とEMBRAPAが旱魃/高温耐性大豆について協力
日本国際農業科学研究センター(JIRCAS)、国際協力事業団(JICA)と日本科学技術事業団(JST)からなる日本政府代表は、のための日本インターナショナルリサーチセンターの日本の政府代表者は、LondrinaのEmbrapa Soja(ブラジル農業研究社と協議をして、旱魃と高温に耐性のある大豆品種の開発プロジェクトに関して詳細を打つあわせることとしている。年計画のプロジェクトに関する議論は、各々の研究活動に対する責任、科学的交換の計画等に関するもので両者が覚書に署名した。
日本政府による支援は、EMBRAPAがその研究室を改良するためのものである。更にEMPRABA Sojaの研究者であるAlexandre Nepomuceno氏は、「この技術協力プロジェクトで利用できる資源で、圃場試験の実施を拡大できる、またバイオ安全性と旱魃や高温のような環境ストレスに耐性のある大豆の商業品種開発に向けての新しい組換え技術の利用戦略に関する研究の開始が可能になる」と述べた。
ポルトガル語の報告は以下のサイトにある。http://www.cnpso.embrapa.br/noticia/ver_noticia.php?cod_noticia=572
*ヨーロッパ*
– ベルギーで遺伝子組換えポプラの試験が開始
遺伝子組換え作物実地試験のベルギーでの禁止は、現在終わっている。フランダースバイオテクノロジー研究所(VIB)は、より少ないリグニンとより多くのセルロースを生産する遺伝子組換えポプラを制御され、管理された開放系栽培のベルギー連邦政府からの承認を得た。それは、2002年以降この国での最初の実地試験である。
ヨーロッパBiotech Newsのレポートによると、実地試験の許可を取得するために、VIBは州(ベルギーの最高裁判所)の会議に行かなければならなかった。2008年月に、それがベルギーのバイオ安全性顧問会議とフランダース地域の環境担当大臣から承認を受け取った後でさえ、VIBの試験申請は拒否されていたものである。
リグニンは、植物に構造的強さと病原体と害虫の予防手段となっている。しかし、リグニンをエネルギーの豊富なセルロースから切り離すことは、時間がかかり、経費もかかる。リグニンの含量を変えた組換え植物は、より安くてより緑の方法でエタノールを作る鍵でありえる。VIB研究者がテストしているポプラの木は、グラムあたり20パーセントより少ないリグニンと17パーセントのセルロースを含む。温室の試験では、遺伝子組換えポプラは従来の品種より50パーセント多くのエタノールを生産することが分かった。
原報告は、以下のサイトにある。 http://www.eurobiotechnews.eu/service/start-page/top-news/?no_cache=1&tx_ttnews%5Btt_news%5D=10354&tx_ttnews%5BbackPid%5D=12&cHash=55358c4963
– EFSA は、組換えトウモロコシ MON810 を再評価
ヨーロッパ食品安全局(EFSA)は、欧州連合で遺伝子組換え(GM)トウモロコシMON810の既存の認可を再承認の申請に関してその科学的な評価をするために2009年9月にこれらに関して決定権をもつ人々を集めている。
市民協会からの先のコメントに応えて、EFSAは以下のような点を示した。
- GMOパネルは、関連事項に適切な化学的な研究を行ったと確信している。
- GMOパネルは研究を軽く見たり無視したりせず、 MON810の栽培が対象外の生物である蝶や他の昆虫に副作用を及ぼす可能性は極めて低いと結論した。
- MON810に存在するか理論的に発見される可能性のある全てのタンパク質を検討し、パネルは、安全性の懸念はないとした。
全文は以下のサイトにある。http://www.efsa.europa.eu/EFSA/efsa_locale-1178620753812_1211902771813.htm
-胴枯れ病耐性ジャガイモがもうすぐ出現するか?
150年以上も前にアイルランドで破壊的脅威を起こした胴枯れ病菌Phytopthora infestansは、現在でも世界中のジャガイモ栽培者の脅威である。この病原菌は、栽培者に病原体は毎年栽培者に30億ポンド(50億米ドル)の費用を生産減と科学薬剤のために浪費させている。近年では、英国のDundee大学の研究者は、ワーウィックHRIとアバディーン大学と共同研究を行って、ジャガイモ胴枯れ病をおさえるために新しい戦略の開発で役に立つ重要な病原性遺伝子を特定したと報告した。
Paul Birch氏をリーダーとする科学者は、宿主の防御を抑制する病原菌によって分泌される効果のあるタンパク質を指令している500以上の遺伝子を同定した。そして、これらのタンパク質の中に、同氏らはRXLRという遺伝子群を発見し、これらは、病原菌が宿主に病原体タンパク質を導入する為に必要であることを発見した。「我々は、RXLRの発見に心を躍らせている。これが宿主の内部にタンパク質を導入して植物の防御機構を見つけるためのきっかけになるからである」とPaul Birch氏が述べた。研究者は、彼らの発見が多種多様な植物病(ジャガイモ胴枯れ病だけでない)をおさえる方法の開発につながると期待している。
より詳しくは以下のサイトにある。 http://www.bbsrc.ac.uk/media/releases/2009/090810_potato_blight_looks_promising_food_security.html
– ヨーロッパは医薬生産遺伝子組換え植物の開放系栽培の指針を公表
ヨーロッパのFood Safety局(EFSA)は、医薬または産業酵素を生産する遺伝子組換え作物の栽培のために最初のヨーロッパのガイドラインを公表した。ガイドラインに従って、申請者は遺伝子組換え植物とその非トランスジェニック対応する植物の違いとこれらの違いが植物の機能と成長に及ぼす影響を特定する必要がある。EFSAは、比較分析が重要であり、特に「人間、家畜と野生動物による意図しない摂取、組換え作物を扱う農民や労働者の取り扱い中の暴露、また周辺に住んでいる人々の露顕」に関しての比較分析が重要であると言っている。
ガイドラインではまた申請者は、環境に組換え作物が漏出することを防ぐ方策を詳述する必要があるとしている。安定して生物活性物質を生産する植物に関しては、申請者は組換え植物が草食されることや潅漑や廃水を通して漏出することを防ぐか、減らす方策を考案する必要がある。申請者は、最悪のシナリオを含むすべての環境状況の下での封じ込め評価のデーターを提供する必要がある。
EFSAは、組換え植物を栽培するにあたっての「リスク」を考慮するだけである。ヨーロッパ医薬局(EMEA)は、植物が生産する物質の安全を評価することを担当することになる。
Nature誌に公表された報告によると、米国食品医薬品局(FDA)と米国農務省(USDA)が設定した規則をこの指針は「馴染むようにした」ものである。
ガイドラインは以下のサイトから、 http://www.efsa.europa.eu/EFSA/efsa_locale-1178620753812_1211902783659.htm 、またNature誌の購読者は以下のサイトから詳報を入手できる。 http://www.nature.com/news/2009/090807/full/news.2009.630.html
– 英国では消費者は遺伝子組換え食品をそれほど心配していない
英国食品標準局(FSA)の年4回の諸費者調査によるとほんの21パーセントが食品の組換え作物由来の成分を安全問題にかかわるもと考えているに過ぎない。これは、この調査の直前の結果と比較して、かなり低い。そのうえ、懸念の問題を確認するよう求められてはじめて、インタビューされる人のわずか4パーセントが組換え食品問題をとりあげた。食中毒と食品の脂肪、塩と砂糖の量が回答者の一番上の安全問題だった。これに続いて、33%が食品価格をそして添加物の使用と農薬の残存を食品安全の関心事としてあげた。
報告は以下のサイトにある。 http://www.food.gov.uk/multimedia/pdfs/fsatrackersurvey.pdf
——-
研究
——-
– 遺伝子組換えトウモロコシは線虫を集めて強力なハムシモドキを殺す
スイスのthe University of Neuchâtelの研究者は、揮発性の化学物質を出して線虫を集め恐れられている西洋ハムシモドキの幼虫に抵抗性遺伝子を組換えたトウモロコシを開発した。これは、格言に言われる「敵の敵は、友人だ」に当たる。
草食性昆虫に攻撃されると植物は多数の揮発性の化学物質を発する。これらの化学物質は、様々の機能を持っている。その中には、天敵の引きつける力、または科学者が「間接的な防御」と呼ぶものが含まれる。ハムシモドキに攻撃されたトウモロコシは、たとえば、線虫を引きつけるために、(E)-β-カリオフィレン(EβC)を発する。しかし、研究者は数十年にわたる育種の研究後、大部分の北アメリカトウモロコシの品種は、もはやセスキテルペンを発生しなくなり、有益な線虫を引きつける能力を失った。
マックスプランク化学生態学研究所から共同研究者とNeuchâtelの研究者は、オレガノからEβC-シンターゼ遺伝子を取り出し、通常この化合物を発しないトウモロコシ品種に導入した。遺伝子組換えトウモロコシの実地試験は、University of MissouriのコロンブスにあるBradford研究所で行われた。ミズーリのブラッドフォードResearch大学で行われました、そして、ハムシモドキに荒らされている区域で線虫を放出したところ遺伝子組換え体は有意に根の障害が少なくなり、非組換え体よりも60%少ない西洋ハムシモドキ(Diabrotica )成虫が出てきた。
「殺虫剤を使う代わりに、ハムシモドキの幼虫の天敵の使用は、ずっと環境にやさしかった」と、この研究プロジェクトに参加したJörg Degenhardt 氏が述べた。研究者は、商業的に生存可能な品種を開発することができなかったが、遺伝生物学的に害虫抵抗性を強化することが可能であることを示した。
PNASに出版された報告は、以下のサイトにあります。http://dx.doi.org/10.1073_pnas.0906365106更に詳しい情報は既に発表されている人々とは以下のサイトで連絡してください。
http://www.ice.mpg.de/news/prelease/Pressem_Degenhardt2009_en.pdf
– タバコでの組換えタンパク質を増加させる新しい機構
組換え型タンパク質の過剰発現は、植物で望みの表現型を得る戦略のうちの1つである。エラスチン様ポリペプチド(ELP’s)は合成バイオ高分子で、融合ポリペプチドは植物で様々の組換え型タンパク質の蓄積を強化することが示された。ロンドンのAgriculture and Agri-Food CanadaのRita Menassaと同僚は、緑色蛍光タンパク質(GFP)に融和するELPタグを開発して、タバコ細胞の細胞質、葉緑体、アポプラストと細胞質網状構造(ER)で組換え型タンパク質蓄積を増やす際の有用性とその機構の研究を試験した。
その結果ERがエラスチン様ポリペプチドを蓄えて、かなり組換え型融合タンパク質蓄積を強化した唯一の細胞小器官であることが分かった。そのうえ、新型のタンパク質体が、ERで異種組換え型タンパク質が分解するのを保護する役割を果たすとわかった。これらのタンパク質体は、植物の種子で自然に見つかるプロラミンに基づくタンパク質体に、サイズと形態学が良く似ている。哺乳類の由来のELP-GFP融合タンパク質は、過剰発現の際に植物細胞でこれらのタンパク質体によって保護されているようである。
詳細は、以下のサイトにある要旨と短報を見てください。l http://www.biomedcentral.com/1741-7007/7/48/abstract
– 代謝制御工学による植物中のビタミン B6 含量の増加
ビタミンB6は、水溶性ビタミンで3つの形態:ピリドキシン、ピリドキサールとピリドキサミンをとる。B複合体は、重要な生化学反応を引き起こしている多くの酵素の補因子の働く。自分でビタミンB6を合成することができるバクテリアと植物と対照的に、動物はその食事からビタミンを摂取する必要がある。特に高齢層では、ビタミンB6欠乏は、認識機能障害、アルツハイマー病、心血管疾患と様々のガンに関与している。それゆえに、栄養価値改善のために植物中のビタミンB6濃度を上昇させることは、科学者の興味を惹いている。
米国Donald Danforth Plant Science Centerからの研究者は、Plant Biotechnology Journalに代謝工学的にシロイヌナズナの種子中のビタミンB6含量を増やすことが可能であると報告した。遺伝子PDX1とPDX2の過剰発現は、シロイヌナズナでその非組換え対応品種と比較して組換え体では種子で倍多いビタミンB6を蓄えるに至った。Hao Chen とLiming Xiongは、その発見、特に種子が食物や飼料の主体のもので貴重な発見であると報告した。
報告は以下のサイトにある。 http://dx.doi.org/10.1111/j.1467-7652.2009.00433.x
ひどい損害をもたらすイモチ病耐性の遺伝子を発見 日本の科学者が恐ろしいイモチ病に抵抗性を示す遺伝子を特定した。この遺伝子を高収量のイネ品集に導入することで数百万人の食糧を確保できる。
世界的問題
米は、世界の半分以上の人口を支えている。それは、小麦の次に、世界で番目に広く栽培されている。この作物は、2008年に1億5500万ヘクタール以上に植え付けられた。アジアのおよそ25億人は、大部分はインド、中国、インドネシアとバングラデシュのような発展途上国いる人々は、米とその製品から70%以上のカロリー摂取をしている。そのうえ、アジア(アフリカとアメリカ)の10億以上の家庭は、生計の主なところを米に依存している。
世界的な米生産は、しかし、多数の難問に直面している。国連食糧農業機関(FAO)によると、病気、害虫と雑草は、30パーセント以上の歩留低下の要因である。イモチ病は、イネで最も重くて広範囲にわたる病気のうちの1つである。真菌Magnaporthe oryzaeに起因し、この病気は田全域に及ぶものである。大部分のイネ栽培品種は、イネイモチ病にかかりやすい。
日本では、福岡修一博士(農業生物資源研究所)によると、200,000トンも、毎年この病気で収穫を失っている。
変容する標的
Magnaporthe oryzaeは、易しい標的ではない。多数の研究者は、イモチ病に対して抵抗性を示す遺伝子を特定した。しかし、病原体はこれらの抵抗性遺伝子に対して容易に抵抗性を獲得する。その上、これらの遺伝子を備えている米栽培品種は、通常農学的にその農業特性が劣っている。
近年では、福岡修一氏をリーダーとする日本の研究者は、イモチ病に対しいてより長続きする抵抗性を示す新しい遺伝子を特定した。遺伝子(pi21)は、重金属結合領域と推定のタンパク質-タンパク質インタラクションをもつと推定されるモティーフのあるプロリンの多いタンパク質をコードしている。それは、日本で長い間日本で栽培されてきたイモチ病抵抗性品種の質的形質部位(QTL)にまで遡ることができる。しかしこの品種は、量が良くないので人気がない。
報告は以下のサイトで続いて読んで下さい。 http://www.isaaa.org/kc/cropbiotechupdate/researchfeatures/default.html#
Novel_Gene_Promises_Durable_Resistance_Against_the_Dreaded_Rice_Blast.htm
– 遺伝子組換え作物からの心臓に優しい油
オメガ-3脂肪酸が豊富な食事が心血管疾患のリスクを減少させることは、多くの調査で示されている。これらの脂肪酸の摂取がメタボリックシンドロームやシンドロームXの徴候を減らすことが示されている。オメガ-3脂肪酸の主な食事の源、特にエイコサペンタエン酸とドコサヘキサエン酸の源は、油の多い魚(例えばいわし、サバとサケなど)である。
Rothamsted Researchと英国のヨーク大学の研究者は、組換えシロイヌナズナや亜麻の種子でオメガ-3脂肪酸を大量に蓄積するように品種を開発した。遺伝子導入植物は、サクラソウ(Primula vialii)からのΔ6-デサチュラーゼ(ステアリド酸の生合成経路の中の重要な酵素)をコードする遺伝子を発現させてある。研究者は、組換え亜麻は、「トリアシルグリセロールの13.4%がステアリド酸であると報告した。この濃度は、唯一の自然な商業植物源(Echium spp.)または組換え大豆油にあるのと同じである」と報告した。
ステアリド酸増量亜麻仁油には優れた健康に有益な特性があると研究者が述べた。Echiumと組換え大豆からの油とは異なり、これにはγ-リノレン酸(心臓の健康保持に良くないと考えられている脂肪酸)が存在しない。しかもオメガ-3/オメガ-6比率が高い特徴がある。
Plant Biotechnology Journal の報告は以下のサイトにある。 http://dx.doi.org/10.1111/j.1467-7652.2009.00436.x
—————–
バイオ燃料補遺
—————–
– セルロース分解能を改良するためのTrichoderma reesei おける交雑の利用
(以下のサイトにある報告を見るには、購読料が必要です。)
http://www.pnas.org/content/93/15/7755.full.pdf+html?sid=d31224eb-f7dc-4c73-8ad3-4e0d4bc9c224
http://www.livescience.com/environment/090810-ideas-fungus-biodiesel.html
http://www.thebioenergysite.com/news/4319/scientists-force-fungus-to-breed-to-create-biofuel
真菌、Trichoderma reeseiは、大量のセルラーゼ酵素(セルロースエタノール生産のために一般に使われる酵素)を生産するその能力のために、長く認められてきた。セルラーゼ生産のさらにより高いレベルのためにTrichoderma reeseiを改善することの困難さは、この菌が無性生殖をするためとの認識である。「Trichoderma reeseiが無性生殖をするとの仮定中で、この真菌を改善するためには、その遺伝子に変異を与えるには、放射線または化学薬品の量を変える技術に限られていた。」、これは、しかし、ランダムで測できない突然変異を引き起こすだけだった。これに対して、有性生殖微生物は、遺伝物質の交換や混合ができるので遺伝的な改質がやりやすいと報告されている。ウィーン工業大学(オーストリア)からの科学者はTrichoderma reeseiが真菌のもう一つの種Hypocrea jecorinaと遺伝的に同一である証拠を見つけた。しかもそれが有性生殖ができることを見つけた。つの微生物の主要な違いは、「Hypocrea jecorinaは雄と雌の役割をできるのに、Trichoderma reeseiは雄の役割しか出来ない」。つまりTrichoderma reeseiが有性生殖できる可能性を示した。科学者は、この発見が有性生殖能のあるTrichoderma株を用いることでより安くてより良いセルラーゼを作り更にこれを用いてバイオ燃料を作るより費用対効果がよい方法開発へとにつながる期待している。この研究の詳細は、米国科学アカデミー紀要(PNAS)(上記のURL)に発表されている。
-“ロゼッタ酵素、Rozettazyme”: セルロースからのエタノール生産のための合成セルロソーム
http://biofuelsdigest.com/blog2/2009/08/04/nasa-researchers-assemble-rosettazyme-synthetic-cellusome-potentially-increasing-cellulosic-conversion-efficiency/
http://www.sciencedirect.com/science/journal/01681656
リグノセルロースバイオマスからのバイオ燃料エタノールの生産において、セルロース分子は、酵素で単糖に分解される(「加水分解される」か、「糖化される」)、続いて酵素によってエタノールに変換される。バイオマス抵抗体とはリグノセルロースバイオマスのセルロース分子の酵素分解に対する抵抗性を示すものを指し、しばしばセルロースからのエタノール生産技術の商業化において主なるボトルネックになっている。セルロソームの利用は、このバイオマス抵抗体を狙った試みをする一つの研究領域である。 分子生物物理学センターウェブサイトでは、セルロソームは「嫌気性菌によって生産される大きな細胞外酵素複合体で、容易に糖類に分解できる細胞壁多糖類(例えばセルロース、ヘミセルロースとペクチン)である」と定義される。「構造的には、セルロソームは、「足場タンパク質」のまわりにいろいろな酵素が配置され形である。近年では、科学者の国際的チームは、セルロソームについているセルラーゼ酵素は、遊離した酵素よりも分解活性が高いと報告している。彼らは、設計した多酵素構造体を
「rosettazymes」とよんでいる。彼らの研究の詳細は、J. Biotechnologyに発表される。(上記のURL)」
セルロソームに関連するものは、以下のサイトにある。http://cmb.ornl.gov/research/cellulosome/cellulosome-design-for-cellulosic-ethanol
– “不合格“スイカジュースの飼料または/及びアルコール発酵の窒素補給剤としての利用
http://www.sciencedaily.com/releases/2009/08/090826073546.htm
http://www.biotechnologyforbiofuels.com/content/2/1/18
(上記サイトには全報告のpdf版が収載されている。)
アメリカ合衆国農務省Agricultural Research Service(USDA-ARS)の南部中央研究所の研究者が、「不合格品」スイカジュースがアルコール発酵の直接原料または、窒素補助剤として使えることを発見した。廃棄されるスイカジュースがエタノール生産の原料となる可能性を示す経済シナリオが示された。年間のスイカ収穫のおよそ20%は、「不合格品」(表面の傷や形の悪さ)となる。リコピンとL-シトルリン(健康のための付加価値「機能性食品」)は「不合格品」スイカジュースから抽出できる可能性がある。その量は、およそ加工される「不合格」スイカのトンあたり500リットルになる。スイカジュースは、発酵できる糖を約7%―10%と15~35マイクロモル/Lの遊離アミノ酸を含むと言われている。糖含有量はエタノール発酵のための良い糖原となり、またアミノ酸含有量からエタノール発酵の良い窒素補助剤となる。研究者は、残留アミノ酸を含むリコピンのないスイカジュースが「そのまま唯一の原料として、または、希釈剤、貯蔵補助剤とグラニュー糖または糖蜜への窒素補足として発酵性の原料となる。」こと見出した。「スイカジュースを希釈剤、補足的な栄養剤、と窒素源として用いることで、pH3糖濃度25%(w/v)まで加工した砂糖または糖蜜を完全に発酵できた(g砂糖につき0.36~0.41gのエタノールへの転換)またpH 5では、g砂糖につき0.41~0.46gのエタノール生産、または最高35%(w/v)
の糖濃度まで完全発酵を行った。」
完全な報告は、誰もが利用できるジャーナルウェブサイト(バイオ燃料のためのバイオテクノロジー、上記URL )で入手でる。。
– 固定床発酵用に改良した微生物は、バイオ燃料であるブタノールの生産を改善した
http://aiche.confex.com/aiche/2009/webprogrampreliminary/Paper162963.html
http://researchnews.osu.edu/archive/butanol.htm
http://www.greencarcongress.com/2009/08/yang-20090820.html
ブタノールは四炭素アルコールです。そして、それはその対応する二炭素物(エタノール)より良いバイオ燃料と考えられる。それは、通常、農業原料を使ってABE(アセトン-ブタノール-エタノール)発酵をClostridiaで生産している。ブタノールのより良いバイオ燃料としての特徴(エタノールと比較して)は、(1)より高いエネルギー密度、()より高い疎水性(既存の燃料輸送パイプで水が入らない。;また、より腐食性がなく、より高い濃度でガソリンと混合できる)。しかし、発酵生産微生物へのブタノールの毒性のために、ブタノール生産の商業化におけるバリアは、その低い生産量、低い生産性と低い生産濃度である。低い生産濃度は、ブタノールを発酵ブロスから分離するためのコストを押し上げることになる。オハイオ州立大学からの科学者は、繊維性ベッドバイオリアクター(FBB)で一つの連続的経路での発酵するブタノール生産性と最終生産濃度を改善しようとした。彼らは繊維性ベッドバイオリアクター(FBB)でClostridium beijerinckiiの非胞子形成変異体株を固定して、さらなるブタノール生産を(培地組成と発酵管理に関して)を最適化した。科学者も、「FBBベースの最適化と変異株利用を合わせて、より高いブタノール耐性の方へ向かわせて[ブタノール]生産の高いClostridium beijerinckii株のより急速な造成を行えると言及している。